ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ansar Calloo, Jean-François Vidal, Romain Le Tellier, Gérald Rimpault
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 182-198
Technical Paper | doi.org/10.13182/NSE14-57
Articles are hosted by Taylor and Francis Online.
In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law on Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with nonzero values for a small range of the scattering angle. The finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of these cross sections. As such, the Legendre expansion is less well suited to represent the scattering law. Furthermore, this model induces negative values, which are nonphysical. Piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. Thus, the finite-volume method for angular discretization has been developed and implemented in the PARIS environment. This method is adapted for both the Legendre moments and the piecewise-constant functions representations. It provides reference deterministic results that validate the standard Legendre polynomial representation with a P3 expansion.