ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Liujun Pan, Ruihong Wang, Song Jiang
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 199-208
Technical Paper | doi.org/10.13182/NSE14-73
Articles are hosted by Taylor and Francis Online.
We propose a modified method to improve the stability of the Monte Carlo fission matrix acceleration (FM) method. In the existing FM method, the weights of fission neutrons are adjusted by the fundamental-mode eigenvector of the fission matrix, which can be calculated by power iteration (PI). In this paper, the PI procedure to calculate the fundamental-mode eigenvector of the fission matrix in each cycle is called the inner iteration to distinguish it from the Monte Carlo iteration cycles. In our proposed method, the fission source distribution tallied during the Monte Carlo simulation is taken as the initial vector for the inner iteration. The weights of the fission neutrons are not adjusted by the fundamental-mode eigenvector of the fission matrix but by the vector obtained with only a few inner iteration steps. We call the proposed method the Monte Carlo fission matrix acceleration method with limited inner iteration (FM_lii). The FM_lii method possesses the following properties: It is more stable than the existing fission matrix acceleration method, and it preserves considerable acceleration efficiency. Moreover, we analyze the stability property of the proposed method for the case of two weakly coupled fissile arrays. A number of numerical tests for practical large-scale, loosely coupled systems are presented that demonstrate the theoretical analysis and efficiency of our scheme.