ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Liujun Pan, Ruihong Wang, Song Jiang
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 199-208
Technical Paper | doi.org/10.13182/NSE14-73
Articles are hosted by Taylor and Francis Online.
We propose a modified method to improve the stability of the Monte Carlo fission matrix acceleration (FM) method. In the existing FM method, the weights of fission neutrons are adjusted by the fundamental-mode eigenvector of the fission matrix, which can be calculated by power iteration (PI). In this paper, the PI procedure to calculate the fundamental-mode eigenvector of the fission matrix in each cycle is called the inner iteration to distinguish it from the Monte Carlo iteration cycles. In our proposed method, the fission source distribution tallied during the Monte Carlo simulation is taken as the initial vector for the inner iteration. The weights of the fission neutrons are not adjusted by the fundamental-mode eigenvector of the fission matrix but by the vector obtained with only a few inner iteration steps. We call the proposed method the Monte Carlo fission matrix acceleration method with limited inner iteration (FM_lii). The FM_lii method possesses the following properties: It is more stable than the existing fission matrix acceleration method, and it preserves considerable acceleration efficiency. Moreover, we analyze the stability property of the proposed method for the case of two weakly coupled fissile arrays. A number of numerical tests for practical large-scale, loosely coupled systems are presented that demonstrate the theoretical analysis and efficiency of our scheme.