ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Argala Srivastava, S. B. Degweker
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 460-476
Technical Paper | doi.org/10.13182/NSE14-42
Articles are hosted by Taylor and Francis Online.
Analytical Green’s function–based diffusion Monte Carlo (MC) methods have been applied earlier for simulation of reactor noise experiments for measuring the degree of subcriticality in accelerator-driven systems. In this method analytical solution of the diffusion equation is used to construct the probability distribution function for neutron absorption in a medium. This method has several advantages such as speed, elegance, and exactitude but was applicable to a rather restricted class of problems, such as an infinite or bare homogeneous medium.
In the present paper, we further develop the analytical Green’s function (analytical diffusion kernel) approach to demonstrate its utility in a wider class of problems like a heterogeneous medium with the same or different diffusion coefficients. We provide mathematical and numerical proofs of the validity of certain recipes that were proposed for heterogeneous systems. We also investigate whether and to what extent the diffusion theory–based MC can be improved to give results closer to transport theory, particularly in situations wherein diffusion theory methods are otherwise inapplicable.