ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Nicholas W. Touran, John C. Lee
Nuclear Science and Engineering | Volume 179 | Number 1 | January 2015 | Pages 85-103
Technical Paper | doi.org/10.13182/NSE13-85
Articles are hosted by Taylor and Francis Online.
We developed a simulation tool that accelerates the evaluation of design changes on the equilibrium cycle of fast-spectrum nuclear reactors. Within the tool, an implicit equilibrium cycle search is accelerated by a modal expansion perturbation method that expands arbitrary flux perturbations on a large basis of λ-eigenmode harmonics. The harmonics are computed only at the reference state using Krylov subspace iterative methods, and substantial perturbations from this state are shown to be well approximated by computationally efficient algebraic expressions. The modal expansion method is coupled to the equilibrium method to produce the later-in-time response of each design perturbation, resulting in an explicit perturbation-accelerated equilibrium cycle method. Because the method determines the perturbed flux explicitly, a wide variety of core performance metrics may be tracked within optimization frameworks, including the performance of thermal hydraulics, fuel, economics, core mechanical, and transients. This capability strongly differentiates the method from traditional generalized perturbation theory approaches. The motivating end-use of the method is to evaluate objective functions in multidisciplinary optimization of advanced reactor designs, though many other applications are envisioned.