ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. C. Wilson, R. N. Slaybaugh
Nuclear Science and Engineering | Volume 179 | Number 1 | January 2015 | Pages 22-41
Technical Paper | doi.org/10.13182/NSE13-109
Articles are hosted by Taylor and Francis Online.
Continued demand for accurate and computationally efficient transport methods to solve optically thick, fixed-source transport problems has inspired research on variance-reduction (VR) techniques for Monte Carlo (MC). Methods that use deterministic results to create VR maps for MC constitute a dominant branch of this research, with Forward Weighted–Consistent Adjoint Driven Importance Sampling (FW-CADIS) being a particularly successful example. However, locations in which energy and spatial self-shielding are combined, such as thin plates embedded in concrete, challenge FW-CADIS. In these cases the deterministic flux cannot appropriately capture transport behavior, and the associated VR parameters result in high variance in and following the plate. This work presents a new method that improves performance in transport calculations that contain regions of combined space and energy self-shielding without significant impact on the solution quality in other parts of the problem. This method is based on FW-CADIS and applies a Resonance Factor correction to the adjoint source. The impact of the Resonance Factor method is investigated in this work through an example problem. It is clear that this new method dramatically improves performance in terms of lowering the maximum 95% confidence interval relative error and reducing the compute time. Based on this work, we recommend that the Resonance Factor method be used when the accuracy of the solution in the presence of combined space and energy self-shielding is important.