ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
December 2024
Fusion Science and Technology
November 2024
Latest News
Matthew Marzano confirmed as newest NRC commissioner
A nuclear engineer, former reactor operator, and nuclear navy educator earned U.S. Senate approval today to take a seat on the Nuclear Regulatory Commission.
Matthew Marzano was confirmed in a 50–45 vote in the Senate and steps into an existing five-year term that will expire June 30, 2028. He joins the five-member commission, which has been without a tiebreaker vote since June 2023, when Jeff Baran’s term expired.
Marzano brings more than a decade of industry experience both working in nuclear plants and advising energy policy on Capitol Hill.
M. Guyot, P. Gubernatis, C. Suteau
Nuclear Science and Engineering | Volume 178 | Number 2 | October 2014 | Pages 202-224
Technical Paper | doi.org/10.13182/NSE13-80
Articles are hosted by Taylor and Francis Online.
Numerical simulations of the primary phase of a hypothetical core disruptive accident are currently based on a multiple-channel approach, which requires that subassemblies or groups of subassemblies be represented together as independent channels. Generally, a single-pin treatment is used to model the channel fuel pins. The limitation of this simplified approach should be assessed because it can affect voiding and melting patterns that in turn may influence reactivity insertions and power history. In the same manner, the single-pin hypothesis may introduce important biases in the prediction of can-wall thermal ablation. Radial propagation of the degradation and subsequent accident consequences may thus be affected. To improve the safety assessment of sodium fast reactors, two-dimensional effects are investigated using a multiple-pin model. Numerical results for a severe accident transient show that the current methodology is nonconservative and predicts the onset of sodium boiling with a delay. A two-node radial meshing of the subassembly is preferred for treating the peripheral ring of fuel pins separately from the rest of the pins. This treatment would allow overcoming the previous issue and give more accurate initiating phase simulations.