ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
C. Dubi, I. Israelashvili, T. Ridnik
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 350-359
Technical Paper | doi.org/10.13182/NSE13-2
Articles are hosted by Taylor and Francis Online.
Neutron multiplicity counting (NMC) measurements are often affected by the detection system dead time. Still, dead time losses are often neglected in analytic NMC models, and most of the dead time corrections are done through empirical models, experimentally fitted to the measurement system. In the present paper, we introduce a new analytic model for calculating the effect of a system dead time on the outcome of NMC. The model is subjected to two assumptions (in addition to the standard model assumptions in multiplicity counting): The first is that the dead time can be described by a paralyzable model, and the second is that the dead time effect may occur only between neutrons arriving from the same source event. The second assumption is, in fact, a restriction on the source event rate in the system and, in certain cases, may eventually be translated into a restriction on the mass of the measured sample.