ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bingjing Su, G. C. Pomraning
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 309-319
Technical Paper | doi.org/10.13182/NSE96-A28580
Articles are hosted by Taylor and Francis Online.
Standard PN theory is well developed as an approximation to the neutron transport equation. However, this theory contains no physics in the sense that it simply represents the angular flux as a sum of polynomials in angle. Thus, standard PN theory (with N finite) cannot qualitatively predict correct asymptotic transport behavior except in the limit of pure scattering. In this paper‚ we modify standard PN theory by incorporating certain transport physics, namely, the Case discrete modes, into a modified PN expansion of the angular flux. The theory resulting from using this modified PN-like expansion predicts the exact transport asymptotic growth/decay length, since it contains the discrete Case eigenvalue. Such modified P3-like equations and associated boundary conditions are derived in planar geometry according to a recently introduced variational calculus. Analyses and numerical calculations reveal that this modified P3-like theory possesses the following features: (a) It reduces to standard P3 theory in the limit of pure scattering; (b) it conserves neutrons but exhibits a scalar flux discontinuity at a material interface; (c) it is shown numerically to be exceedingly accurate, much more accurate than standard P3 theory, in predicting various transport theory behavior for homogeneous problems; and (d) for heterogeneous problems, it is necessary that each material region in the system be sufficiently large for this theory to predict better results than standard P3 theory.