ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
G. Ivan Maldonado, Paul J. Turinsky, David J. Kropaczek,Geoffrey T. Parks
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 312-325
Technical Paper | doi.org/10.13182/NSE95-A28567
Articles are hosted by Taylor and Francis Online.
The computer code FORMOSA-P (Fuel Optimization for Reloads Multiple Objectives by Simulated Annealing—PWR) has been developed to address pressurized water reactor (PWR) in-core nuclear fuel management optimization. Until recently, the optimization objectives available to the user included minimization of relative power peaking throughout the cycle, maximization of the end-of-cycle reactivity, and maximization of region-average discharge burnup. In addition, during an optimization, various core attributes (including the preceding objectives) can be optionally activated as constraints via penalty functions or to directly reject sampled loading patterns that violate established design limits. The underlying theoretical framework that enables the accurate and efficient calculation of objective and constraint values within the FORMOSA-P code is its higher order, nodal generalized perturbation theory (GPT) neutronics model. The utility of the FORMOSA-P code has been extended to include a traditionally out-of-core decision variable, namely, the fresh (i.e., feed) reload fuel enrichment. This is accomplished by formulating the feed enrichment as a GPT variable that can be adjusted concurrently with changes in the core loading pattern to enforce a target cycle length. This provides a reload designer with the capability to minimize feed enrichment during an in-core optimization while enforcing all other constraints (e.g., power peaking limit, cycle energy requirement, degree of eighth-core power tilt, discharge burnup limit, and moderator temperature coefficient limit).