ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C. Vaglio-Gaudard, O. Leray, A. C. Colombier, O. Gueton, J. P. Hudelot, M. Valentini, J. Di Salvo, A. Gruel, J. C. Klein, A. Roche, D. Beretz, B. Geslot, J. M. Girard, C. Jammes, P. Sireta
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 318-328
Technical Paper | doi.org/10.13182/NSE12-67
Articles are hosted by Taylor and Francis Online.
A new experimental program, named AMMON, was performed between late 2010 and early 2013 in the EOLE zero-power experimental reactor at CEA Cadarache. It is dedicated to the analysis of the neutron and photon physics of the Jules Horowitz Reactor (JHR), the next international materials testing reactor under construction in France. The objective of the program is to provide measurement data for the experimental validation of the calculation tools developed for the JHR design and safety studies. The first core configuration, the so-called reference configuration, was loaded in 2012; it consisted of an experimental zone of seven JHR assemblies with U3Si2-Al, 27% 235U enriched fuel curved plates surrounded by a driver zone with 622 standard pressurized water reactor uranium oxide fuel pins. It has been instrumented and studied throughout the first year of the experimental program.The final analysis of the AMMON/REF neutron measurements is presented in this paper. It is based on calculations performed with the three-dimensional reference Monte Carlo TRIPOLI-4.7 code and the JEFF3.1.1 European library. The comparison between calculation and experiment makes it possible to calibrate the bias due to nuclear data on the calculated neutron parameters. It highlights good agreement between calculation and experiment concerning reactivity, power distribution in the experimental zone, fuel plate conversion ratios, and core kinetics parameters. The reactivity prediction is very satisfactory, despite the presence of a large aluminum quantity in the core: calculation-to-experiment comparison (C - E) = + 365 ± 334 pcm (1). For the other neutron parameters (assembly power distribution, plate conversion ratios, and kinetics parameters), the (C - E)/E discrepancies are within the experimental uncertainty (2).