ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
F. Maekawa, Y. Oyama
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 205-217
Technical Paper | doi.org/10.13182/NSE97-A24267
Articles are hosted by Taylor and Francis Online.
Neutron spectra below 10 keV in an iron shield assembly bombarded by deuterium-tritium neutrons are measured with accuracy between 5 to 13% by adopting the slowing-down time method. The measurement supplemented previous spectrum measurements for higher energies so that the neutron spectrum in the whole energy range from 14 MeV down to 0.3 eV is now available. Benchmark tests of iron data in JENDL-3.1, JENDL-3.2, JENDL fusion file, and FENDL/E-1.0 were carried out in the whole energy range with experimental uncertainty at ∼10% by utilizing the present and previous experiments. As a result, it was found that cross-section data in the newer versions of JENDL were improved in terms of agreement with the experiment. Calculation with JENDL fusion file and FENDL/E-1.0 could predict neutron fluxes in the whole energy range within 20 and 15%, respectively. Possible over- and underestimations for nonelastic and elastic cross sections, respectively, at 14 MeV in all JENDLs were pointed out. It was confirmed that low-energy neutron fluxes were very sensitive to Q values for discrete inelastic cross sections of natural iron and 57Fe(n,n’1,) reaction, which were not adequately treated in JENDL-3.1.