ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
J. Devooght
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 1-17
Technical Paper | doi.org/10.13182/NSE96-A24220
Articles are hosted by Taylor and Francis Online.
The problem of linear transport in a stationary stochastic medium is examined in the context of stochastic geometry. Boolean models of stochastic media allow calculation of density correlations without use of Markovian assumptions. Most correlation functions are well represented by linear combinations of a few exponentials. Systems of integrodifferential equations are obtained either (a) by a perturbative treatment or (b) by truncation of the hierarchy of moments. The presence of an integral term (i.e., a nonlocal flux) can be avoided by the use of an approximate equivalence between the product of the transport Green function by an exponential with the transport Green function of a modified problem. Introduction of auxiliary unknowns gives rise to a system of coupled Boltzmann equations describing the ensemble average of the flux.