ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
J. Devooght
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 1-17
Technical Paper | doi.org/10.13182/NSE96-A24220
Articles are hosted by Taylor and Francis Online.
The problem of linear transport in a stationary stochastic medium is examined in the context of stochastic geometry. Boolean models of stochastic media allow calculation of density correlations without use of Markovian assumptions. Most correlation functions are well represented by linear combinations of a few exponentials. Systems of integrodifferential equations are obtained either (a) by a perturbative treatment or (b) by truncation of the hierarchy of moments. The presence of an integral term (i.e., a nonlocal flux) can be avoided by the use of an approximate equivalence between the product of the transport Green function by an exponential with the transport Green function of a modified problem. Introduction of auxiliary unknowns gives rise to a system of coupled Boltzmann equations describing the ensemble average of the flux.