ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Tsung-Kuang Yeh, Digby D. Macdonald, Arthur T. Motta
Nuclear Science and Engineering | Volume 121 | Number 3 | December 1995 | Pages 468-482
Technical Paper | doi.org/10.13182/NSE95-A24148
Articles are hosted by Taylor and Francis Online.
A computer code with the capability of simultaneously estimating the concentrations of radiolysis species, the electrochemical corrosion potential, and the kinetics of growth of a reference crack in sensitized Type 304 stainless steel is developed for the heat transport circuits of boiling water reactors (BWRs). The primary objective of this code, DAMAGE-PREDICTOR, is to theoretically evaluate the effectiveness of hydrogen water chemistry (HWC) in the BWRs as a function of feedwater hydrogen concentration and reactor power level. The power level determines various important thermal-hydraulic parameters and the neutron and gamma energy deposition rate in the core and near-core regions. These input parameters are estimated using well-established algorithms, and the simulations are carried out for full-power conditions for two reactors that differ markedly in their responses to HWC. The DAMAGE-PREDICTOR code is found to successfully account for plant data from both reactors using a single set of model parameter values.