ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Bingjing Su, G. C. Pomraning
Nuclear Science and Engineering | Volume 120 | Number 2 | June 1995 | Pages 75-90
Technical Paper | doi.org/10.13182/NSE95-A24109
Articles are hosted by Taylor and Francis Online.
The problem of describing particle transport through a Markovian stochastic mixture of two immiscible materials is generally approximated by the so-called Levermore model, consisting of two coupled transport equations. In this paper, the P2 diffusive equations and the associated boundary conditions for this Levermore model are derived in planar geometry by using a variational principle, and numerical results comparing P2, P1, and S16 (benchmark) calculations are presented. These results demonstrate that the P2 equations are considerably more accurate than the P1 equations away from boundary layers. An asymptotic diffusion approximation to this model is also explored with several different boundary conditions, and the overall conclusion is that the asymptotic diffusion treatment is in general inferior to P2 theory, and its superiority over P1 theory is not overwhelming and not consistent.