ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Bingjing Su, G. C. Pomraning
Nuclear Science and Engineering | Volume 120 | Number 2 | June 1995 | Pages 75-90
Technical Paper | doi.org/10.13182/NSE95-A24109
Articles are hosted by Taylor and Francis Online.
The problem of describing particle transport through a Markovian stochastic mixture of two immiscible materials is generally approximated by the so-called Levermore model, consisting of two coupled transport equations. In this paper, the P2 diffusive equations and the associated boundary conditions for this Levermore model are derived in planar geometry by using a variational principle, and numerical results comparing P2, P1, and S16 (benchmark) calculations are presented. These results demonstrate that the P2 equations are considerably more accurate than the P1 equations away from boundary layers. An asymptotic diffusion approximation to this model is also explored with several different boundary conditions, and the overall conclusion is that the asymptotic diffusion treatment is in general inferior to P2 theory, and its superiority over P1 theory is not overwhelming and not consistent.