ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bingjing Su, G. C. Pomraning
Nuclear Science and Engineering | Volume 120 | Number 2 | June 1995 | Pages 75-90
Technical Paper | doi.org/10.13182/NSE95-A24109
Articles are hosted by Taylor and Francis Online.
The problem of describing particle transport through a Markovian stochastic mixture of two immiscible materials is generally approximated by the so-called Levermore model, consisting of two coupled transport equations. In this paper, the P2 diffusive equations and the associated boundary conditions for this Levermore model are derived in planar geometry by using a variational principle, and numerical results comparing P2, P1, and S16 (benchmark) calculations are presented. These results demonstrate that the P2 equations are considerably more accurate than the P1 equations away from boundary layers. An asymptotic diffusion approximation to this model is also explored with several different boundary conditions, and the overall conclusion is that the asymptotic diffusion treatment is in general inferior to P2 theory, and its superiority over P1 theory is not overwhelming and not consistent.