ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Bingjing Su, G. C. Pomraning
Nuclear Science and Engineering | Volume 120 | Number 2 | June 1995 | Pages 75-90
Technical Paper | doi.org/10.13182/NSE95-A24109
Articles are hosted by Taylor and Francis Online.
The problem of describing particle transport through a Markovian stochastic mixture of two immiscible materials is generally approximated by the so-called Levermore model, consisting of two coupled transport equations. In this paper, the P2 diffusive equations and the associated boundary conditions for this Levermore model are derived in planar geometry by using a variational principle, and numerical results comparing P2, P1, and S16 (benchmark) calculations are presented. These results demonstrate that the P2 equations are considerably more accurate than the P1 equations away from boundary layers. An asymptotic diffusion approximation to this model is also explored with several different boundary conditions, and the overall conclusion is that the asymptotic diffusion treatment is in general inferior to P2 theory, and its superiority over P1 theory is not overwhelming and not consistent.