ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Katsuo Suzuki, Junya Shimazaki, Koiti Watanabe
Nuclear Science and Engineering | Volume 119 | Number 2 | February 1995 | Pages 128-138
Technical Paper | doi.org/10.13182/NSE95-A24077
Articles are hosted by Taylor and Francis Online.
The problem of estimating the time-varying net reactivity from flux measurements is solved for a point reactor kinetics model using a linear filtering technique in an H∞ setting. In order to use this technique, an appropriate dynamical model of the reactivity is constructed that can be embedded into the reactor model as one of its state variables. A filter, which minimizes the norm of the estimation error power spectrum, operates on neutron density measurements corrupted by noise and provides an estimate of the dynamic net reactivity. Computer simulations are performed to reveal the basic characteristics of the H∞ optimal filter. The results of the simulation indicate that the filter can be used to determine the time-varying reactivity from neutron density measurements that have been corrupted by noise.