ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jaques Reifman, Thomas Y. C. Wei
Nuclear Science and Engineering | Volume 131 | Number 3 | March 1999 | Pages 348-369
Technical Paper | doi.org/10.13182/NSE99-A2039
Articles are hosted by Taylor and Francis Online.
The unique capabilities of the first-principles-based PRODIAG diagnostic system to identify unanticipated process component faults and to be ported across different processes/plants through modification of only input data files are demonstrated in two validation tests. The Braidwood Nuclear Power Plant full-scope operator training simulator is used to generate transient data for two plant systems used in the validation tests. The first test consists of a blind test performed with 39 simulated transients of 20 distinct types in the Braidwood chemical and volume control system. Of the 39 transients, 37 are correctly identified with varying precision within the first 40 s into the transient while the remaining two transients are not identified. The second validation test consists of a double-blind test performed with 14 simulated transients in the Braidwood component coolant water system. In addition to having no prior knowledge of the identity of the transients, in the double-blind test we also had no prior information regarding the identity of the component faults that the simulator was capable of modeling. All 14 transient events are correctly identified with varying precision within the first 30 s into the transient. The test results provide enough evidence to successfully confirm the unique capabilities of the plant-level PRODIAG diagnostic system.