ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Martin Lopez de Bertodano
Nuclear Science and Engineering | Volume 117 | Number 2 | June 1994 | Pages 126-133
Technical Paper | doi.org/10.13182/NSE94-A20079
Articles are hosted by Taylor and Francis Online.
The objective of this analysis is to obtain an algebraic correlation for flooding and unflooding in a pressurized water reactor (PWR) hot leg during reflux core cooling. This correlation may be used in loss-of-coolant accident analysis codes such as RELAP5. The one-dimensional two-fluid model equations are solved to obtain a void fraction profile along the pipe. A jump condition is included in the model to account for the possibility of a hydraulic jump. The flooding correlation by Mishima and Ishii is used to determine the flooding point. The model is validated against the scaled-down data of Krolewski and the full-scale data of Ohnuki, Adachi, and Murao. Reducing the coefficient of the flooding correlation to match the full-scale data is necessary to account for the effect of diameter size. Based on the validated model, a flooding correlation is obtained along the lines of the Wallis flooding criterion. It is further shown that under the conditions prevalent during PWR refluxing, the hysteresis between flooding and unflooding is not relevant, so the same correlation is valid for both.