ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
M. Dhandhang Purwadi, M. Tsuji, M. Narita, M. Itagaki
Nuclear Science and Engineering | Volume 129 | Number 1 | May 1998 | Pages 88-96
Technical Note | doi.org/10.13182/NSE98-A1966
Articles are hosted by Taylor and Francis Online.
A technique is presented for solving neutron diffusion equations with the boundary element method (BEM) based on a hierarchical domain decomposition technique. In this method, the reactor domain is decomposed into homogeneous regions and the boundary condition on the common boundary of regions is initially assumed. The neutron diffusion equation is solved iteratively at two levels of hierarchical structure: First, BEM is applied to solve the neutron diffusion equation of each homogeneous region under the given assumed boundary conditions and an assumed multiplication factor. Then, these assumed values are modified to satisfy the continuity conditions for the neutron flux and neutron current.The proposed technique is useful for multiregion problems with a large number of regions of complex geometry, where the finite difference approximation cannot be applied properly.