ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. E. Kornreich, B. D. Ganapol
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 317-337
Technical Paper | doi.org/10.13182/NSE97-A1938
Articles are hosted by Taylor and Francis Online.
The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating a benchmark-quality calculation for the three-dimensional searchlight problem in a semi-infinite medium. The derivation assumes stationarity, one energy group, and isotropic scattering. The scalar flux (both surface and interior) and the current at the surface are the quantities of interest. The source considered is a pencil-beam incident at a point on the surface of a semi-infinite medium. The scalar flux will have two-dimensional variation only if the beam is normal; otherwise, it is three-dimensional. The solutions are obtained by using Fourier and Laplace transform methods. The transformed transport equation is formulated so that it can be related to a one-dimensional pseudo problem, thus providing some analytical leverage for the inversions. The numerical inversions use standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, H-function iteration and evaluation, and Euler-Knopp acceleration. The numerical evaluations of the scalar flux and current at the surface are relatively simple, and the interior scalar flux is relatively difficult to calculate because of the embedded two-dimensional Fourier transform inversion, Laplace transform inversion, and H-function evaluation. Comparisons of these numerical solutions to results from the MCNP probabilistic code and the THREEDANT discrete ordinates code are provided and help confirm proper operation of the analytical code.