ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
D. E. Kornreich, B. D. Ganapol
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 317-337
Technical Paper | doi.org/10.13182/NSE97-A1938
Articles are hosted by Taylor and Francis Online.
The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating a benchmark-quality calculation for the three-dimensional searchlight problem in a semi-infinite medium. The derivation assumes stationarity, one energy group, and isotropic scattering. The scalar flux (both surface and interior) and the current at the surface are the quantities of interest. The source considered is a pencil-beam incident at a point on the surface of a semi-infinite medium. The scalar flux will have two-dimensional variation only if the beam is normal; otherwise, it is three-dimensional. The solutions are obtained by using Fourier and Laplace transform methods. The transformed transport equation is formulated so that it can be related to a one-dimensional pseudo problem, thus providing some analytical leverage for the inversions. The numerical inversions use standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, H-function iteration and evaluation, and Euler-Knopp acceleration. The numerical evaluations of the scalar flux and current at the surface are relatively simple, and the interior scalar flux is relatively difficult to calculate because of the embedded two-dimensional Fourier transform inversion, Laplace transform inversion, and H-function evaluation. Comparisons of these numerical solutions to results from the MCNP probabilistic code and the THREEDANT discrete ordinates code are provided and help confirm proper operation of the analytical code.