ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
D. E. Kornreich, B. D. Ganapol
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 317-337
Technical Paper | doi.org/10.13182/NSE97-A1938
Articles are hosted by Taylor and Francis Online.
The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating a benchmark-quality calculation for the three-dimensional searchlight problem in a semi-infinite medium. The derivation assumes stationarity, one energy group, and isotropic scattering. The scalar flux (both surface and interior) and the current at the surface are the quantities of interest. The source considered is a pencil-beam incident at a point on the surface of a semi-infinite medium. The scalar flux will have two-dimensional variation only if the beam is normal; otherwise, it is three-dimensional. The solutions are obtained by using Fourier and Laplace transform methods. The transformed transport equation is formulated so that it can be related to a one-dimensional pseudo problem, thus providing some analytical leverage for the inversions. The numerical inversions use standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, H-function iteration and evaluation, and Euler-Knopp acceleration. The numerical evaluations of the scalar flux and current at the surface are relatively simple, and the interior scalar flux is relatively difficult to calculate because of the embedded two-dimensional Fourier transform inversion, Laplace transform inversion, and H-function evaluation. Comparisons of these numerical solutions to results from the MCNP probabilistic code and the THREEDANT discrete ordinates code are provided and help confirm proper operation of the analytical code.