ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ehud Greenspan, J. Vujic, J. Burch
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 262-291
Technical Paper | doi.org/10.13182/NSE97-A1935
Articles are hosted by Taylor and Francis Online.
Neutronic characteristics of critical configurations, which may be formed if large enough quantities of weapons-grade plutonium that might be stored in a geologic repository are released, transported, and deposited below the repository on rock surfaces in fractures, are investigated. Three neutronic characteristics of the plutonium-rock-water systems are examined: multiplication factor k, time eigenvalue , and effective neutron generation time . A time-independent, parametric neutronic study is performed to address two questions:1. For a given combination of design variables (including distance between fractures, fracture width, fissile material layer thickness, water contents in the rock, and concentration of 240Pu), what is the critical thickness of the plutonium deposition layer?2. How will the neutronic characteristics vary as any one of the performance variables of this study (including water removal; fissile material and rock temperature increase; homogenization of fissile and rock materials; buildup of fission and transmutation products; and, for finite cores, core expansion) vary from their reference values?Three processes are identified that have the potential for a large positive reactivity feedback: (a) water removal, (b) spectrum hardening, and (c) homogenization. The higher the initial water concentration, the more absorbing the medium, the more heterogeneous the plutonium deposition, and the larger the core volume, the larger the magnitude of positive reactivity feedback can be. Critical configurations were identified in which all but one (i.e., core expansion) of the reactivity feedback mechanisms are positive. Scenarios are described in which natural phenomena could "drive" slightly subcritical configurations to develop an autocatalytic prompt supercritical chain reaction.