ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ehud Greenspan, J. Vujic, J. Burch
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 262-291
Technical Paper | doi.org/10.13182/NSE97-A1935
Articles are hosted by Taylor and Francis Online.
Neutronic characteristics of critical configurations, which may be formed if large enough quantities of weapons-grade plutonium that might be stored in a geologic repository are released, transported, and deposited below the repository on rock surfaces in fractures, are investigated. Three neutronic characteristics of the plutonium-rock-water systems are examined: multiplication factor k, time eigenvalue , and effective neutron generation time . A time-independent, parametric neutronic study is performed to address two questions:1. For a given combination of design variables (including distance between fractures, fracture width, fissile material layer thickness, water contents in the rock, and concentration of 240Pu), what is the critical thickness of the plutonium deposition layer?2. How will the neutronic characteristics vary as any one of the performance variables of this study (including water removal; fissile material and rock temperature increase; homogenization of fissile and rock materials; buildup of fission and transmutation products; and, for finite cores, core expansion) vary from their reference values?Three processes are identified that have the potential for a large positive reactivity feedback: (a) water removal, (b) spectrum hardening, and (c) homogenization. The higher the initial water concentration, the more absorbing the medium, the more heterogeneous the plutonium deposition, and the larger the core volume, the larger the magnitude of positive reactivity feedback can be. Critical configurations were identified in which all but one (i.e., core expansion) of the reactivity feedback mechanisms are positive. Scenarios are described in which natural phenomena could "drive" slightly subcritical configurations to develop an autocatalytic prompt supercritical chain reaction.