ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Yasuki Kowata, Nobuo Fukumura
Nuclear Science and Engineering | Volume 127 | Number 1 | September 1997 | Pages 89-103
Technical Paper | doi.org/10.13182/NSE97-A1923
Articles are hosted by Taylor and Francis Online.
Plutonium fuel could be utilized in the entire core of a heavy water-moderated, boiling light water-cooled pressure-tube-type reactor (HWR). The coolant void reactivity, however, depends on the various parameters of the lattice. It is especially significant to clarify the effect of plutonium nuclides on the void reactivity.The void reactivities in the infinite HWR lattices have been parametrically analyzed to clarify the effects of changes in the lattice parameters on the void reactivity using the WIMS-D4 code with the JENDL-3.1 nuclear data. At present, it is known that the behavior of the void reactivity can be clarified by separating the components of fuel nuclides, neutron cross sections, energy groups, and regions in the lattice cell from the global reactivity effect, using the important reaction rates.If the fuels are the same in the macroscopic absorption cross section for the 2200 m/s neutron, it has been shown that the void reactivity shifts further to a negative direction in a narrower pitch lattice and in the plutonium-fueled lattice with a higher content of 239Pu rather than in the uranium one. The effect of reducing the void reactivity to the negative by fissile plutonium is caused mainly by the presence of the resonance cross section at ~0.3 eV of 239Pu. The higher the content of 239Pu, the less the recovery of dipped neutron flux within the resonance energy width due to a decrease in the thermal neutron scattering of hydrogen with an increase in coolant void fraction, so that the decreased resonance fission rate for 239Pu contributes to the more negative direction for the void reactivity.On the other hand, resonance at ~0.3 eV for 241Pu does not have an important role for the void reactivity because its resonance cross section is smaller than that of 239Pu.