ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yasuki Kowata, Nobuo Fukumura
Nuclear Science and Engineering | Volume 127 | Number 1 | September 1997 | Pages 89-103
Technical Paper | doi.org/10.13182/NSE97-A1923
Articles are hosted by Taylor and Francis Online.
Plutonium fuel could be utilized in the entire core of a heavy water-moderated, boiling light water-cooled pressure-tube-type reactor (HWR). The coolant void reactivity, however, depends on the various parameters of the lattice. It is especially significant to clarify the effect of plutonium nuclides on the void reactivity.The void reactivities in the infinite HWR lattices have been parametrically analyzed to clarify the effects of changes in the lattice parameters on the void reactivity using the WIMS-D4 code with the JENDL-3.1 nuclear data. At present, it is known that the behavior of the void reactivity can be clarified by separating the components of fuel nuclides, neutron cross sections, energy groups, and regions in the lattice cell from the global reactivity effect, using the important reaction rates.If the fuels are the same in the macroscopic absorption cross section for the 2200 m/s neutron, it has been shown that the void reactivity shifts further to a negative direction in a narrower pitch lattice and in the plutonium-fueled lattice with a higher content of 239Pu rather than in the uranium one. The effect of reducing the void reactivity to the negative by fissile plutonium is caused mainly by the presence of the resonance cross section at ~0.3 eV of 239Pu. The higher the content of 239Pu, the less the recovery of dipped neutron flux within the resonance energy width due to a decrease in the thermal neutron scattering of hydrogen with an increase in coolant void fraction, so that the decreased resonance fission rate for 239Pu contributes to the more negative direction for the void reactivity.On the other hand, resonance at ~0.3 eV for 241Pu does not have an important role for the void reactivity because its resonance cross section is smaller than that of 239Pu.