ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Kenji Higuchi, Kiyoshi Asai, Yukihiro Hasegawa
Nuclear Science and Engineering | Volume 127 | Number 1 | September 1997 | Pages 78-88
Technical Paper | doi.org/10.13182/NSE97-A1922
Articles are hosted by Taylor and Francis Online.
Experiences with vectorization of production-level Monte Carlo codes such as KENO-IV, MCNP, VIM, and MORSE have shown that it is difficult to attain high speedup ratios on vector processors because of indirect addressing, nests of conditional branches, short vector length, cache misses, and operations for realization of robustness and generality. A previous work has already shown that the first, second, and third difficulties can be resolved by using special computer hardware for vector processing of Monte Carlo codes. Here, the fourth and fifth difficulties are discussed in detail using the results for a vectorized version of the MORSE code. As for the fourth difficulty, it is shown that the cache miss-hit ratio affects execution times of the vectorized Monte Carlo codes and the ratio strongly depends on the number of the particles simultaneously tracked. As for the fifth difficulty, it is shown that remarkable speedup ratios are obtained by removing operations that are not essential to the specific problem being solved. These experiences have shown that if a production-level Monte Carlo code system had a capability to selectively construct source coding that complements the input data, then the resulting code could achieve much higher performance.