ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
B. R. Wienke, J. E. Morel
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 79-87
Technical Paper | doi.org/10.13182/NSE90-A19214
Articles are hosted by Taylor and Francis Online.
Thermonuclear burn criteria, with charged-particle energy deposition, in fusion plasmas using a perturbative expansion of the coupled burn and transport equations about any quasi-equilibrium temperature are examined. Burn propagation and energy deposition are coupled in a reaction wave model, and effects are quantified using linearized one-temperature-plus-diffusion equations. Eigenvalue growth rate and propagation criteria, which depend on plasma properties and alpha mean-free-paths, are described. Effective cross sections appropriate to random mixtures are discussed, and burn propagation and energy deposition in limiting cases of homogeneous and heterogeneous media are contrasted. Methodology is general to thermonuclear processes, but our focus is deuterium-tritium burn in the reaction d + t → n + α.