ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
F. Capone, J. P. Hiernaut, M. Martellenghi, C. Ronchi
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 436-454
Technical Paper | doi.org/10.13182/NSE96-A17922
Articles are hosted by Taylor and Francis Online.
Irradiated light water reactor fuel from the BR3 reactor was thermally annealed up to 2500 K in a Knudsen cell, and the effusing vapors were measured by mass spectrometry. The experiments provide data on the stoichiometry evolution of the fuel during release as well as a reliable method to evaluate the diffusion coefficients of volatile and less-volatile fission products.The analysis of the data starts from diffusion of xenon, which clearly shows three typical release stages respectively controlled by radiation damage annealing, self-diffusion, and matrix vaporization. The experimental measurements are also in agreement with the predictions of intragranular trapping models.Barium and cesium showed faster release than xenon, the former being likely to diffuse atomically to the grain boundaries where no evidence of formation of stable zirconates was found. These results were compared with those obtained by a burnup-simulated fuel, where barium was initially present in a perovskite phase, producing essentially different release patterns.