ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Nam Zin Cho, Chang Je Park
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 417-430
Technical Paper | doi.org/10.13182/NSE96-A17920
Articles are hosted by Taylor and Francis Online.
We solve the neutron diffusion equation by a wavelet Galerkin scheme in this paper. Wavelet functions are generated by dilation and translation operation on a scaling function. The wavelet functions are localized in space and have a recursive property, so these properties may be utilized to solve a differential equation that has severe “stiffness. ”The wavelet Galerkin method (WGM) represents the solution as a summation of Daubechies’ scaling functions, which are also used as the weighting function. The Daubechies’ scaling functions have the properties of orthogonality and high smoothness. Unlike the finite element method, the weighting function is the Daubechies’ scaling function, and the unknowns determined are not the fluxes of the nodes but the coefficients of the scaling functions. The scaling functions are overlapping in the nodes and require special treatment at interfaces between nodes and at the boundaries. We tested the WGM with several diffusion theory problems in reactor physics. The solutions are very accurate with increasing Daubechies’ order and dilation order. The boundary conditions are also satisfied very well. In particular, the WGM provides very accurate solutions for heterogeneous problems in which the flux distribution exhibits very steep gradients.We conclude that it is worthwhile investigating further the WGM for reactor physics problems and that numerical integration and acceleration of the matrix equation must be improved so as to reduce computing time.