ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Michael L. Corradini
Nuclear Science and Engineering | Volume 84 | Number 3 | July 1983 | Pages 196-205
Technical Paper | doi.org/10.13182/NSE83-A17789
Articles are hosted by Taylor and Francis Online.
The phenomenon of film destabilization due to an externally applied pressure transient has been investigated experimentally by Inoue and Bankoff. This film collapse process is of interest with regard to vapor explosions. An important step in vapor explosions is believed to be the onset of the rapid heat transfer between the molten fuel and coolant caused by pressure-pulse-induced film boiling destabilization. A dynamic film boiling model was developed to analyze film destabilization, and to predict from Inoue's experiment over a range of initial pressures and final shock pressures, shock rise times, and heater surface temperatures. The model indicated three important results. 1. The nonequilibrium model shows better quantitative agreement with the data while the equilibrium model generally underpredicts the peak heat flux qp by a factor of 2 to 3 for short shock rise times (τp ≈ 80 µs). 2. Both models neglect the effect of interface distortions due to Taylor instabilities. This physical effect should increase the predicted values of the peak heat flux. 3. The film collapse process can be successfully modeled using an equilibrium model for shock rise times >100 µs and is in agreement with the nonequilibrium model. One possible inference from this analysis is that the suppression of vapor explosions due to initial conditions (e.g., ambient pressure) is caused by the increasing difficulty of collapsing the vapor film. Thus, to overcome the effects of these initial conditions, a more energetic trigger needs to be applied to destabilize the film and to induce the explosion.