ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Wei Ji, William R. Martin
Nuclear Science and Engineering | Volume 169 | Number 1 | September 2011 | Pages 19-39
Technical Paper | doi.org/10.13182/NSE10-73
Articles are hosted by Taylor and Francis Online.
In this paper the chord method is applied to the computation of Dancoff factors for doubly heterogeneous stochastic media, characteristic of prismatic and pebble bed designs of the Very High Temperature Gas-Cooled Reactor (VHTR), where TRISO fuel particles are randomly distributed in fuel compacts or fuel pebbles that are arranged in a full core configuration. Previous work has shown that a chord length probability distribution function (PDF) can be determined analytically or empirically and used to model VHTR lattices with excellent results. The key observation is that once the chord length PDF is known, Dancoff factors for doubly heterogeneous stochastic media can be expressed as closed-form expressions that can be evaluated analytically for infinite and finite media and semianalytically for a collection of finite media.Based on the assumption that the chord length PDF in the moderator region between two fuel kernels in a VHTR compact or pebble is exponential, which was shown to be an excellent approximation in previous work, closed-form expressions for Dancoff factors are derived for a range of configurations from infinite stochastic media to finite stochastic media, including multiple finite stochastic media in a background medium (e.g., a pebble bed core). Numerical comparisons with Monte Carlo benchmark results demonstrate that the closed-form expressions for the Dancoff factors for VHTR configurations are accurate over a range of packing fractions characteristic of prismatic and pebble bed VHTRs.