ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. I. Katz
Nuclear Science and Engineering | Volume 168 | Number 2 | June 2011 | Pages 164-171
Technical Paper | doi.org/10.13182/NSE10-19
Articles are hosted by Taylor and Francis Online.
This paper reviews measurements of fission cross sections of short-lived nuclear states, summarizes the formidable experimental difficulties involved, and suggests novel methods of overcoming some of those difficulties. It is specifically concerned with the two such states that have been well characterized, the J = 1/2+ (26-min) isomeric 235mU and the J = 1- (16-h) ground state (shorter lived than the isomer) 242gsAm, and with measuring their fission cross sections at mega-electron-volt energies. These measurements are formidably difficult, partly because of the need to produce, separate, and collect the short-lived states before they decay and partly because of their comparatively small fission cross sections at these energies. This paper presents quantitative calculations of the efficiency of advection of recoiling 235mU isomers by flowing gas in competition with diffusive loss to the surface containing the mother 239Pu, and it reports the initial development and evaluation of some of the methods that must be developed to make the experiments feasible.