ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Nicolas Martin, Alain Hébert
Nuclear Science and Engineering | Volume 167 | Number 3 | March 2011 | Pages 177-195
Technical Paper | doi.org/10.13182/NSE10-45
Articles are hosted by Taylor and Francis Online.
The possibility of performing Monte Carlo transport calculations using cross-section probability tables on the entire energy spectrum is discussed in this paper. This method possesses straight advantages toward other representations: Self-shielding effects are represented during the random walk in a straightforward way, and the calculation cost remains below continuous-energy simulations. This study takes advantage of previous contributions made in subgroup-based self-shielding models, regarding the definitions of optimized energy meshes and adequate numerical methods for consistently computing cross-section probability tables. Moment-based probability-table cross sections along with an energy mesh comprising only 295 groups lead to results with a similar level of accuracy to those obtained with a continuous-energy Monte Carlo method. Another innovative aspect of this work is related to the introduction of correlated weight matrices into a Monte Carlo algorithm. These correlated weights are used to represent mutual self-shielding effects occurring where resonances of different isotopes overlap.