ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Daniel F. Gill, Yousry Y. Azmy
Nuclear Science and Engineering | Volume 167 | Number 2 | February 2011 | Pages 141-153
Technical Paper | doi.org/10.13182/NSE09-98
Articles are hosted by Taylor and Francis Online.
We present an approach to the k-eigenvalue problem in multigroup diffusion theory based on a nonlinear treatment of the generalized eigenvalue problem. A nonlinear function is posed whose roots are equal to solutions of the k-eigenvalue problem; a Newton-Krylov method is used to find these roots. The Jacobian-vector product is found exactly or by using the Jacobian-free Newton-Krylov (JFNK) approximation. Several preconditioners for the Krylov iteration are developed. These preconditioners are based on simple approximations to the Jacobian, with one special instance being the use of power iteration as a preconditioner. Using power iteration as a preconditioner allows for the Newton-Krylov approach to heavily leverage existing power method implementations in production codes. When applied as a left preconditioner, any existing power iteration can be used to form the kernel of a JFNK solution to the k-eigenvalue problem. Numerical results generated for a suite of two-dimensional reactor benchmarks show the feasibility and computational benefits of the Newton formulation as well as examine some of the numerical difficulties potentially encountered with Newton-Krylov methods. The performance of the method is also seen to be relatively insensitive to the dominance ratio for a one-dimensional slab problem.