ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. R. Reinert, E. A. Schneider, S. R. F. Biegalski
Nuclear Science and Engineering | Volume 166 | Number 2 | October 2010 | Pages 167-174
Technical Paper | doi.org/10.13182/NSE09-45
Articles are hosted by Taylor and Francis Online.
This paper reviews existing Monte Carlo techniques for performing neutron transport simulations in binary random heterogeneous fissile fuels and presents a new approach offering superior efficiency at little cost in fidelity for problems involving densely packed, optically thick absorbers. The accuracy of the chord-length sampling technique is demonstrated to be a function of the total optical thicknesses and optical scattering thickness of the constituent materials as well as the packing density of the fissile kernels. The results of this parameter assessment provide a foundation for an original hybrid algorithm that combines homogeneous and explicit geometry models within a single Monte Carlo simulation. The geometry model utilized is selected according to the energy-dependent optical thickness. By partitioning the geometry representation within a single Monte Carlo simulation into homogenous and heterogeneous energy-dependent models, acceptable ensemble average results are obtained in a fraction of the run time of the detailed explicit geometry benchmark method.