ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
James S. Warsa, Jeffery D. Densmore, Anil K. Prinja, Jim E. Morel
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 36-47
Technical Paper | doi.org/10.13182/NSE09-36
Articles are hosted by Taylor and Francis Online.
Spatially analytic SN solutions currently exist only under very limited circumstances. For cases in which analytical solutions may not be available, one can turn to manufactured solutions to test the properties of spatial transport discretization schemes. In particular, we show it is possible to use a manufactured solution to conduct such tests in the thick diffusion limit, even though the computed solution is independent of the problem characteristics. We show that a diffusion limit scaling with a manufactured solution source term results in an expression that is valid in the diffusion limit, though it is not of the standard form used in asymptotic diffusion limit analysis. We then derive a necessary, but not sufficient, condition that must be satisfied in order for a spatial discretization of the transport equation to preserve the thick diffusion limit. This condition is stated in terms of the difference between a numerically computed scalar flux solution compared against a known scalar flux. For a sufficiently diffusive problem and optically thick mesh cells, the necessary condition states that if a spatial discretization of the SN equations has the thick diffusion limit, the norm of the difference in the two solutions must converge to zero with decreasing mesh cell spacing. Based on the first observation that the diffusion limit holds for a manufactured solution source term, the known solution can conveniently be taken to be a manufactured solution in a mesh refinement numerical experiment to check whether a spatial discretization satisfies this condition. We present computational examples that verify our analysis and illustrate the expediency of this approach.