ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
James S. Warsa, Jeffery D. Densmore, Anil K. Prinja, Jim E. Morel
Nuclear Science and Engineering | Volume 166 | Number 1 | September 2010 | Pages 36-47
Technical Paper | doi.org/10.13182/NSE09-36
Articles are hosted by Taylor and Francis Online.
Spatially analytic SN solutions currently exist only under very limited circumstances. For cases in which analytical solutions may not be available, one can turn to manufactured solutions to test the properties of spatial transport discretization schemes. In particular, we show it is possible to use a manufactured solution to conduct such tests in the thick diffusion limit, even though the computed solution is independent of the problem characteristics. We show that a diffusion limit scaling with a manufactured solution source term results in an expression that is valid in the diffusion limit, though it is not of the standard form used in asymptotic diffusion limit analysis. We then derive a necessary, but not sufficient, condition that must be satisfied in order for a spatial discretization of the transport equation to preserve the thick diffusion limit. This condition is stated in terms of the difference between a numerically computed scalar flux solution compared against a known scalar flux. For a sufficiently diffusive problem and optically thick mesh cells, the necessary condition states that if a spatial discretization of the SN equations has the thick diffusion limit, the norm of the difference in the two solutions must converge to zero with decreasing mesh cell spacing. Based on the first observation that the diffusion limit holds for a manufactured solution source term, the known solution can conveniently be taken to be a manufactured solution in a mesh refinement numerical experiment to check whether a spatial discretization satisfies this condition. We present computational examples that verify our analysis and illustrate the expediency of this approach.