ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
L. Colas, K. Vulliez, V. Basiuk, Tore Supra Team
Fusion Science and Technology | Volume 56 | Number 3 | October 2009 | Pages 1173-1204
Technical Papers | Tore Supra Special Issue | doi.org/10.13182/FST09-A9173
Articles are hosted by Taylor and Francis Online.
As the main additional heating system and the only means to heat the ions, ion cyclotron resonance heating (ICRH) plays a central role in plasma scenario developments on Tore Supra. Conversely, the specific focus of Tore Supra toward long-duration discharges places its heating system in an original position in the ion cyclotron community. High-power long-pulse requirements motivated innovative design choices and operational methods. Over long pulses, the physics of rf waves in the plasma edge early emerged as a crucial issue that was abundantly studied and benefited from original diagnostic techniques, some of which still remain unique in the magnetic fusion community. This paper reviews ICRH technology and physics on Tore Supra, from the generators and antennas to the central plasma via the scrape-off layer. Emphasis is put on the experience gained over 20 years of experimental and theoretical activity. Lessons are drawn for next-step devices.