ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
S. M. González de Vicente, A. Moroño, E. R. Hodgson
Fusion Science and Technology | Volume 56 | Number 1 | July 2009 | Pages 125-128
Plasma Engineering and Diagnostics | Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 1) | doi.org/10.13182/FST09-A8888
Articles are hosted by Taylor and Francis Online.
Reliable plasma diagnostic systems are key elements for an efficient and safe operation of future fusion reactors. These systems use particular components, such as ceramic insulators, dielectric and optical windows, optical fibres and complete sensor assemblies. These materials, in addition to neutron and gamma radiation, will be subjected to bombardment by low energy ions and neutral particles. Alumina (Al2O3) is one of the insulating candidate materials to be used in diagnostic systems for ITER, where it will play important roles as electrical insulation and in optical components. Possible material damage has been examined by implanting He into sapphire at different temperatures to simulate ion bombardment. The electrical conductivity in the implanted region increases by more than nine orders of magnitude. Such severe surface electrical degradation is due to the loss of oxygen from the implanted surface. The loss of oxygen also reduces the material band gap in the surface region and as a consequence the optical transmission is severely reduced. Implantation temperature plays an important role, where one observes that although electrical degradation is higher for higher temperature implantation, optical degradation is lower. The electrical conductivity in the implanted region increases by more than nine orders of magnitude. Such severe surface electrical degradation is due to the loss of oxygen from the implanted surface. The loss of oxygen also reduces the material band gap in the surface region and as a consequence the optical transmission is severely reduced. Implantation temperature plays an important role, where one observes that although electrical degradation is higher for higher temperature implantation, optical degradation is lower.