ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Michal Cihlář, Slavomír Entler, Tomáš Czakoj, Václav Dostál, Jan Prehradný, Pavel Zácha
Fusion Science and Technology | Volume 79 | Number 2 | February 2023 | Pages 104-116
Technical Paper | doi.org/10.1080/15361055.2022.2120301
Articles are hosted by Taylor and Francis Online.
Current tritium production might not be enough for all future fusion research reactors. Different approaches for tritium production have been studied in the past, one of which was tritium production using the accelerator-driven subcritical systems. This idea was dismissed in the 1990s as uneconomical when compared to using existing commercial light water reactors. This paper presents changes to the basic idea, mainly the use of a molten spallation target and molten lithium breeding volume. This advanced design is described, optimized for tritium yield using the MCNP 6.2.0 code, and compared between different accelerators.
The optimized configuration consists of a 1-GeV, 200-mA proton accelerator, a molten Pb-Bi eutectic spallation target with a length of 60 cm and a diameter of 75 cm, and molten lithium breeding volume with dimensions of 500 cm in length and 900 cm in diameter. As calculated, the annual production of the proposed accelerator-driven tritium production system could be as high as 350 g of tritium with the optimized configuration.