ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
S. A. Musa, D. S. Lee, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 858-864
Student Paper Competition Selection | doi.org/10.1080/15361055.2020.1867475
Articles are hosted by Taylor and Francis Online.
A single-finger unit of the Helium-Cooled Modular Divertor with Multiple Jets (HEMJ) with a plasma-facing surface (PFS) area of about 2 cm2 has been studied in a helium (He) loop at He mass flow rates ≤ 8 g/s and nearly prototypical conditions. Based on previous studies of the single finger of the HEMJ, our Georgia Institute of Technology group is planning to experimentally study larger divertors. Given that the HEMJ test section was heated with an induction heater and that it is impractical to scale this up to divertors with larger PFS areas, a reversed heat flux approach is being considered to measure heat transfer coefficients (HTCs). In this approach, the direction of the heat flux is reversed with water cooling and high-temperature He heating of the outer shell attached to the PFS.
This work presents an initial experimental and numerical evaluation of this approach for a single HEMJ finger. Experiments with brass and copper-chromium-zirconium outer shells were conducted at dimensionless He mass flow rates or Reynolds numbers Re = 1 × 104 to 4.7 × 104, an inlet pressure of 10 MPa, temperatures as great as 673 K, and maximum heat flux of 8.4 MW/m2. The experiments verify that the He-side HTCs are independent of the direction of the heat flux. The results agree well with previous Nusselt number correlation and pressure loss coefficients for the HEMJ obtained using the normal heating approach.