ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. A. Musa, D. S. Lee, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 858-864
Student Paper Competition Selection | doi.org/10.1080/15361055.2020.1867475
Articles are hosted by Taylor and Francis Online.
A single-finger unit of the Helium-Cooled Modular Divertor with Multiple Jets (HEMJ) with a plasma-facing surface (PFS) area of about 2 cm2 has been studied in a helium (He) loop at He mass flow rates ≤ 8 g/s and nearly prototypical conditions. Based on previous studies of the single finger of the HEMJ, our Georgia Institute of Technology group is planning to experimentally study larger divertors. Given that the HEMJ test section was heated with an induction heater and that it is impractical to scale this up to divertors with larger PFS areas, a reversed heat flux approach is being considered to measure heat transfer coefficients (HTCs). In this approach, the direction of the heat flux is reversed with water cooling and high-temperature He heating of the outer shell attached to the PFS.
This work presents an initial experimental and numerical evaluation of this approach for a single HEMJ finger. Experiments with brass and copper-chromium-zirconium outer shells were conducted at dimensionless He mass flow rates or Reynolds numbers Re = 1 × 104 to 4.7 × 104, an inlet pressure of 10 MPa, temperatures as great as 673 K, and maximum heat flux of 8.4 MW/m2. The experiments verify that the He-side HTCs are independent of the direction of the heat flux. The results agree well with previous Nusselt number correlation and pressure loss coefficients for the HEMJ obtained using the normal heating approach.