ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
S. A. Musa, D. S. Lee, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 858-864
Student Paper Competition Selection | doi.org/10.1080/15361055.2020.1867475
Articles are hosted by Taylor and Francis Online.
A single-finger unit of the Helium-Cooled Modular Divertor with Multiple Jets (HEMJ) with a plasma-facing surface (PFS) area of about 2 cm2 has been studied in a helium (He) loop at He mass flow rates ≤ 8 g/s and nearly prototypical conditions. Based on previous studies of the single finger of the HEMJ, our Georgia Institute of Technology group is planning to experimentally study larger divertors. Given that the HEMJ test section was heated with an induction heater and that it is impractical to scale this up to divertors with larger PFS areas, a reversed heat flux approach is being considered to measure heat transfer coefficients (HTCs). In this approach, the direction of the heat flux is reversed with water cooling and high-temperature He heating of the outer shell attached to the PFS.
This work presents an initial experimental and numerical evaluation of this approach for a single HEMJ finger. Experiments with brass and copper-chromium-zirconium outer shells were conducted at dimensionless He mass flow rates or Reynolds numbers Re = 1 × 104 to 4.7 × 104, an inlet pressure of 10 MPa, temperatures as great as 673 K, and maximum heat flux of 8.4 MW/m2. The experiments verify that the He-side HTCs are independent of the direction of the heat flux. The results agree well with previous Nusselt number correlation and pressure loss coefficients for the HEMJ obtained using the normal heating approach.