ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Victoria Hypes-Mayfield, William Kubic, David Dogruel, Kirk Hollis, Scott Willms, Joseph H. Dumont
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 836-841
Technical Paper | doi.org/10.1080/15361055.2021.1883978
Articles are hosted by Taylor and Francis Online.
Uranium hydride is commonly used to store hydrogen or its isotopes in a solid state. The Self-Assaying Tritium Accountancy and Containment Unit for ITER (STACI) is a 5.2-kg bed of depleted uranium (dU) capable of holding up to 33 mol of hydrogen or its isotopes. This paper is a summary of data analysis of past experimental campaigns with STACI, with the aim of describing the kinetics and thermodynamics of the hydriding process. Computed tomography imaging was performed on STACI both before and after its experimental campaign, and a high degree of swelling was observed in the dU. Literature on studies in regard to the swelling of large (multikilogram) quantities of uranium hydride for storage applications was not identified during this study. Data from the experimental campaign, as well as data on the formation reaction, are presented. The authors hope to create an analytical model of STACI based on these data.