ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Tim D. Bohm, Mohamed E. Sawan
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 813-828
Technical Paper | doi.org/10.1080/15361055.2021.1908783
Articles are hosted by Taylor and Francis Online.
In the design of fusion reactors, determining radiation levels due to neutrons and photons (gammas) throughout the reactor and its surroundings is important. Radiation transport codes need to have accurate cross-section libraries in order to produce accurate results. The Fusion Evaluated Nuclear Data Library (FENDL) is an international effort coordinated by the International Atomic Energy Agency, Nuclear Data Section, that assembles a collection of the best nuclear data for fusion applications. In the current FENDL-3.1d data library, neutron cross sections for 65 of the 180 isotopes present in the library come from ENDF/B-VII.1.
Monte Carlo–based neutronics calculations using cross-section libraries from FENDL (versions 2.1 and 3.1d), ENDF/B (versions VII.1 and VIII.0), and candidate new evaluations for key structural elements/isotopes such as iron and chromium were performed. The calculations were performed in reactor-relevant models including a one-dimensional (1-D) cylindrical model of ITER, a three-dimensional (3-D) computer-aided design (CAD)–based model of ITER, and a 3-D CAD-based model of the U.S. Fusion Energy System Studies Fusion Nuclear Science Facility (FNSF).
The results show that neutron fluxes calculated with different cross-section libraries can be as much as 12% higher and as much as 8% lower than those calculated with the reference cross-section library (FENDL-2.1). Nuclear heating calculated with different cross-section libraries can be as much as 14% higher and as much as 8% lower than those calculated with the reference cross-section library. Iron displacements per atom calculated with different cross-section libraries can be as much as 9% higher and as much as 9% lower than those calculated with the reference cross-section library. Helium production calculated with different cross-section libraries can be as much as 19% higher and as much as 2% lower than those calculated with the reference cross-section library. Tritium production in the ITER 1-D model’s nonbreeding regions calculated with different cross-section libraries can be as much as 246% higher and as much as 5% lower than those calculated with the reference cross-section library. The tritium breeding ratio in the FNSF 3-D model calculated with different cross-section libraries averaged 1% higher at the inboard and 1.4% higher at the outboard than those calculated with the reference cross-section library.