ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. Krishnamoorthy, S. L. Prathapa Reddy, Ambresh P. Ambalgi, M. Amina Begum
Fusion Science and Technology | Volume 77 | Number 5 | July 2021 | Pages 366-372
Technical Paper | doi.org/10.1080/15361055.2021.1903783
Articles are hosted by Taylor and Francis Online.
This paper presents the generation of modes of angular momentum of the orbital type using a proposed array antenna fed with Rotman lens of multiple layers of compact size. The gain of orbital angular momentum is enhanced by the proposed microstrip antenna, which is a circular array antenna with nine elements fed with Rotman lens utilizing the patch element of high gain. Antenna gain can be enhanced in an effective manner; the patch element is attached with two slots loaded in a stacked patch. The circular array when employing the feeding network with Rotman lens causes excitation of different input ports, which produces carrying beams of orbital angular momentum with mode numbers m = 0, m = ±1, m = ±2, m = ±3, and m = ±4. A phase shift of 160 deg is achieved on the output ports in the adjacent position for meeting the requirement of the phase of orbital angular momentum modes of m = ±4. The detection angle of the ports of the beam and array is adjusted by modifying the Rotman lens for achieving the uniform distribution of amplitude on the output ports of the antenna. Therefore, effective improvement is observed in the radiation pattern of the orbital angular momentum beams, which obtains equal amplitude in all the output ports. The fabrication of a prototype antenna of C band is done, and measurements are performed. Simulated results match the measured results, indicating that generation of orbital angular momentum is done by the antenna proposed in this paper, which can be used in communication systems based on orbital angular momentum.