ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
R. Krishnamoorthy, S. L. Prathapa Reddy, Ambresh P. Ambalgi, M. Amina Begum
Fusion Science and Technology | Volume 77 | Number 5 | July 2021 | Pages 366-372
Technical Paper | doi.org/10.1080/15361055.2021.1903783
Articles are hosted by Taylor and Francis Online.
This paper presents the generation of modes of angular momentum of the orbital type using a proposed array antenna fed with Rotman lens of multiple layers of compact size. The gain of orbital angular momentum is enhanced by the proposed microstrip antenna, which is a circular array antenna with nine elements fed with Rotman lens utilizing the patch element of high gain. Antenna gain can be enhanced in an effective manner; the patch element is attached with two slots loaded in a stacked patch. The circular array when employing the feeding network with Rotman lens causes excitation of different input ports, which produces carrying beams of orbital angular momentum with mode numbers m = 0, m = ±1, m = ±2, m = ±3, and m = ±4. A phase shift of 160 deg is achieved on the output ports in the adjacent position for meeting the requirement of the phase of orbital angular momentum modes of m = ±4. The detection angle of the ports of the beam and array is adjusted by modifying the Rotman lens for achieving the uniform distribution of amplitude on the output ports of the antenna. Therefore, effective improvement is observed in the radiation pattern of the orbital angular momentum beams, which obtains equal amplitude in all the output ports. The fabrication of a prototype antenna of C band is done, and measurements are performed. Simulated results match the measured results, indicating that generation of orbital angular momentum is done by the antenna proposed in this paper, which can be used in communication systems based on orbital angular momentum.