ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
EPRI’s new program aims to strengthen grid resilience
The Electric Power Research Institute has launched a global initiative to prepare future grids by modernizing how the electricity-generating sector detects, anticipates, and responds to emerging risks and manages technological transformation. The nonprofit energy research and development organization intends for the initiative, called Rapid Adaptation of Grid Defense, Analytics, and Resilience (RADAR), to provide a scalable framework, advanced tools, and targeted training for strengthening grid resilience and reliability.
S. Siriano, A. Tassone, G. Caruso
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 144-158
Technical Paper | doi.org/10.1080/15361055.2020.1858671
Articles are hosted by Taylor and Francis Online.
Liquid metals offer unique properties and their use in a nuclear fusion reactor, both as confined flows and free-surface flow, is widely studied in the fusion community. The interaction between this conductive fluid and the tokamak magnetic fields leads to magnetohydrodynamic (MHD) phenomena that influence the flow features. To properly design components that employ liquid metals, it is necessary to accurately predict these features, and although the efforts have been made in development, a mature code specifically customized to simulate MHD flows is still unavailable. In this work, the general purpose computational fluid dynamics code ANSYS CFX 18.2 is validated for MHD free-surface thin-film flow with insulated walls up to and for several values of the characteristic width/thickness ratio, comparing the results with the theoretical relation available in the literature. For all the cases considered, the maximum integral error is found to be below 10%. Successively, the validated code is used to investigate the MHD flow in a chute with a characteristic film ratio equal to 0.1 and for . Uniform and nonuniform wall electrical conductivity cases are considered with the latter modeled by placing on the side walls and on the back wall localized regions with different conductivity. The electrical conductivity of the back wall is found to have a negligible effect on the global flow when the lateral wall is insulated, similarly to what is observed for the analogous bounded flow. Contrariwise, an electrically conductive lateral wall is found to enhance the free-surface jet and to modify the Hartmann layer structure.