ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Weston M. Stacey
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 109-118
Technical Paper | doi.org/10.1080/15361055.2020.1851631
Articles are hosted by Taylor and Francis Online.
Fusion alpha heating introduces new phenomena into plasma dynamics and control. On the worrisome side is the well-known fact that the dependence of the predominantly central fusion heating mechanism, coupled with the less appreciated fact of the predominantly plasma edge location of bremsstrahlung and impurity line and recombination radiation cooling and of ion orbit loss cooling, suggests the possibility of a thermal runaway fusion power excursion in the plasma core. On the encouraging side is the fact that the fusion alpha energy is transferred first to heat the core electrons and produce electron cyclotron radiation that is transferred instantaneously, predominantly to outer plasma regions and the surrounding material wall, reducing its availability for further heating of core plasma ions. This paper discusses the temporal and spatial dependence of the various heating and cooling mechanisms involved in the burn dynamics of a fusion plasma, introduces a spatially coarse nodal space-time calculation model (suitable for dynamics and controller calculations) for the analysis of burning plasmas, and identifies the research needed to fully evaluate the parameters of such a model.