ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Weston M. Stacey
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 109-118
Technical Paper | doi.org/10.1080/15361055.2020.1851631
Articles are hosted by Taylor and Francis Online.
Fusion alpha heating introduces new phenomena into plasma dynamics and control. On the worrisome side is the well-known fact that the dependence of the predominantly central fusion heating mechanism, coupled with the less appreciated fact of the predominantly plasma edge location of bremsstrahlung and impurity line and recombination radiation cooling and of ion orbit loss cooling, suggests the possibility of a thermal runaway fusion power excursion in the plasma core. On the encouraging side is the fact that the fusion alpha energy is transferred first to heat the core electrons and produce electron cyclotron radiation that is transferred instantaneously, predominantly to outer plasma regions and the surrounding material wall, reducing its availability for further heating of core plasma ions. This paper discusses the temporal and spatial dependence of the various heating and cooling mechanisms involved in the burn dynamics of a fusion plasma, introduces a spatially coarse nodal space-time calculation model (suitable for dynamics and controller calculations) for the analysis of burning plasmas, and identifies the research needed to fully evaluate the parameters of such a model.