ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. M. Churchill, C. S. Chang, J. Choi, R. Wang, S. Klasky, R. Kube, H. Park, M. J. Choi, J. S. Park, M. Wolf, R. Hager, S. Ku, S. Kampel, T. Carroll, K. Silber, E. Dart, B. S. Cho
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 98-108
Technical Paper | doi.org/10.1080/15361055.2020.1851073
Articles are hosted by Taylor and Francis Online.
The global nature of the ITER project along with its projected approximately petabyte-per-day data generation presents not only a unique challenge but also an opportunity for the fusion community to rethink, optimize, and enhance our scientific discovery process. Recognizing this, collaborative research with computational scientists was undertaken over the past several years to create a framework for large-scale data movement across wide-area networks to enable global near-real-time analysis of fusion data. This would broaden the available computational resources for analysis/simulation and increase the number of researchers actively participating in experiments.
An official demonstration of this framework for fast, large data transfer and real-time analysis was carried out between the KSTAR tokamak in Daejeon, Korea, and Princeton Plasma Physics Laboratory (PPPL) in Princeton, New Jersey. Streaming large data transfer, with near-real-time movie creation and analysis of the KSTAR electron cyclotron emission imaging data, was performed using the Adaptable Input Output (I/O) System (ADIOS) framework, and comparisons were made at PPPL with simulation results from the XGC1 code. These demonstrations were made possible utilizing an optimized network configuration at PPPL, which achieved over 8.8 Gbps (88% utilization) in throughput tests from the National Fusion Research Institute to PPPL.
This demonstration showed the feasibility for large-scale data analysis of KSTAR data and provides a nascent framework to enable use of globally distributed computational and personnel resources in pursuit of scientific knowledge from the ITER experiment.