ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
R. M. Churchill, C. S. Chang, J. Choi, R. Wang, S. Klasky, R. Kube, H. Park, M. J. Choi, J. S. Park, M. Wolf, R. Hager, S. Ku, S. Kampel, T. Carroll, K. Silber, E. Dart, B. S. Cho
Fusion Science and Technology | Volume 77 | Number 2 | February 2021 | Pages 98-108
Technical Paper | doi.org/10.1080/15361055.2020.1851073
Articles are hosted by Taylor and Francis Online.
The global nature of the ITER project along with its projected approximately petabyte-per-day data generation presents not only a unique challenge but also an opportunity for the fusion community to rethink, optimize, and enhance our scientific discovery process. Recognizing this, collaborative research with computational scientists was undertaken over the past several years to create a framework for large-scale data movement across wide-area networks to enable global near-real-time analysis of fusion data. This would broaden the available computational resources for analysis/simulation and increase the number of researchers actively participating in experiments.
An official demonstration of this framework for fast, large data transfer and real-time analysis was carried out between the KSTAR tokamak in Daejeon, Korea, and Princeton Plasma Physics Laboratory (PPPL) in Princeton, New Jersey. Streaming large data transfer, with near-real-time movie creation and analysis of the KSTAR electron cyclotron emission imaging data, was performed using the Adaptable Input Output (I/O) System (ADIOS) framework, and comparisons were made at PPPL with simulation results from the XGC1 code. These demonstrations were made possible utilizing an optimized network configuration at PPPL, which achieved over 8.8 Gbps (88% utilization) in throughput tests from the National Fusion Research Institute to PPPL.
This demonstration showed the feasibility for large-scale data analysis of KSTAR data and provides a nascent framework to enable use of globally distributed computational and personnel resources in pursuit of scientific knowledge from the ITER experiment.