ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Teng Wang, Yanlan Hu, Huajun Liu, Yu Wu, Yi Shi, Chao Pan, Longgui Zheng
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 229-237
Technical Note | doi.org/10.1080/15361055.2017.1415613
Articles are hosted by Taylor and Francis Online.
The Central Solenoid Model Coils (CSMC) project (2014 to 2018), a part of the National Magnetic Confinement Fusion Science Program, is being developed by China independently under one of the largest research and development activities of the China Fusion Engineering Test Reactor (CFETR), demonstrating and validating the engineering design criteria of the CFETR central solenoid (CS) coil. The expected achievement is to charge the coil up to the operation current of 47.3 kA and the maximum magnetic field to 12 T with a swift rump rate of 1.5 T/s without quench. The quench detection shall be fast enough to dump out the magnetic energy and avoid irreversible damage to the systems. It is expected to provide the validation of design and analysis tools and the demonstration of quench analysis methods in the quench detection of the CFETR CS and the poloidal field (PF) magnet system.
Quench detection by voltage measurements is likely to be the fastest available technical solution, but the voltage detection is a real challenge due to large noise induced by the power supply in alternating current operation. Specific solutions have been proposed for the voltage compensation to effectively reduce the large inductive components from the measured voltage to a certain level. In 2016, the conception design was completed and adopted after the domestic and foreign experts review. This technical note gives an overall view of the quench detection design applied to the CSMC and its numerical results developed, including the classical hot-spot criterion, the quench propagation study, the quench detection parameter settings using the commercial code Supermagnet, and the estimation of the inductive disturbances.