ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Teng Wang, Yanlan Hu, Huajun Liu, Yu Wu, Yi Shi, Chao Pan, Longgui Zheng
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 229-237
Technical Note | doi.org/10.1080/15361055.2017.1415613
Articles are hosted by Taylor and Francis Online.
The Central Solenoid Model Coils (CSMC) project (2014 to 2018), a part of the National Magnetic Confinement Fusion Science Program, is being developed by China independently under one of the largest research and development activities of the China Fusion Engineering Test Reactor (CFETR), demonstrating and validating the engineering design criteria of the CFETR central solenoid (CS) coil. The expected achievement is to charge the coil up to the operation current of 47.3 kA and the maximum magnetic field to 12 T with a swift rump rate of 1.5 T/s without quench. The quench detection shall be fast enough to dump out the magnetic energy and avoid irreversible damage to the systems. It is expected to provide the validation of design and analysis tools and the demonstration of quench analysis methods in the quench detection of the CFETR CS and the poloidal field (PF) magnet system.
Quench detection by voltage measurements is likely to be the fastest available technical solution, but the voltage detection is a real challenge due to large noise induced by the power supply in alternating current operation. Specific solutions have been proposed for the voltage compensation to effectively reduce the large inductive components from the measured voltage to a certain level. In 2016, the conception design was completed and adopted after the domestic and foreign experts review. This technical note gives an overall view of the quench detection design applied to the CSMC and its numerical results developed, including the classical hot-spot criterion, the quench propagation study, the quench detection parameter settings using the commercial code Supermagnet, and the estimation of the inductive disturbances.