ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
P. Rodriguez-Fernandez, A. E. White, A. J. Creely, M. J. Greenwald, N. T. Howard, F. Sciortino, J. C. Wright
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 65-76
Technical Paper | doi.org/10.1080/15361055.2017.1396166
Articles are hosted by Taylor and Francis Online.
Understanding transport in magnetically confined plasmas is critical for developing predictive models for future devices such as ITER. Thanks to recent progress in simulation and theory, along with enhanced computational power and better diagnostic systems, direct and quantitative comparisons between experimental results and models is possible. However, validating transport models using additional constraints and accounting for experimental uncertainties still remains a formidable task. In this work, a new optimization framework is developed to address the issue of constrained validation of transport models. The Validation via Iterative Training of Active Learning Surrogates (VITALS) framework exploits surrogate-based strategies using Gaussian processes and sequential parameter updates to achieve the combination of plasma parameters that matches experimental transport measurements within diagnostic error bars. VITALS is successfully implemented to study L-mode plasmas in the Alcator C-Mod tokamak, and for the first time, additional measurable quantities, such as incremental diffusivity and fluctuation levels, are used during the validation process of the quasi-linear transport models TGLF-SAT1 and TGLF-SAT0. First results indicate that these machine-learning algorithms are very suitable and adaptable as a self-consistent, fast, and comprehensive validation methodology for plasma transport codes.