ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
P. Rodriguez-Fernandez, A. E. White, A. J. Creely, M. J. Greenwald, N. T. Howard, F. Sciortino, J. C. Wright
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 65-76
Technical Paper | doi.org/10.1080/15361055.2017.1396166
Articles are hosted by Taylor and Francis Online.
Understanding transport in magnetically confined plasmas is critical for developing predictive models for future devices such as ITER. Thanks to recent progress in simulation and theory, along with enhanced computational power and better diagnostic systems, direct and quantitative comparisons between experimental results and models is possible. However, validating transport models using additional constraints and accounting for experimental uncertainties still remains a formidable task. In this work, a new optimization framework is developed to address the issue of constrained validation of transport models. The Validation via Iterative Training of Active Learning Surrogates (VITALS) framework exploits surrogate-based strategies using Gaussian processes and sequential parameter updates to achieve the combination of plasma parameters that matches experimental transport measurements within diagnostic error bars. VITALS is successfully implemented to study L-mode plasmas in the Alcator C-Mod tokamak, and for the first time, additional measurable quantities, such as incremental diffusivity and fluctuation levels, are used during the validation process of the quasi-linear transport models TGLF-SAT1 and TGLF-SAT0. First results indicate that these machine-learning algorithms are very suitable and adaptable as a self-consistent, fast, and comprehensive validation methodology for plasma transport codes.