ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Sicong Xiao, Jing Zhao, Zhiwei Zhou, Yongwei Yang
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 559-567
Technical Note | doi.org/10.1080/15361055.2017.1396113
Articles are hosted by Taylor and Francis Online.
In this technical note, an innovative thorium-uranium–fueled fusion-fission hybrid reactor (FFHR) design that employs a dual-coolant system to enhance 233U breeding and is based on a three-dimensional engineering model is presented. The reactor consists of two kinds of modules: a water-cooled, thermal spectrum power generation natural uranium–fueled module and helium-cooled, fast spectrum fissile-breeding natural thorium–fueled modules, which are arranged alternately in the poloidal direction of the blanket. An interesting and important neutronic characteristic of the FFHR is found in this technical note: Energy multiplication is primarily determined by the uranium module parameters and is almost independent of the thorium module parameter. Uranium module design should first consider improving energy production. The 232Th neutron capture rate is primarily determined by the thorium module parameters. The uranium module parameter has almost no influence on the 232Th neutron capture rate in the thorium module. The uranium and thorium modules have weak coupling in neutronic behavior. However, with the fixed design parameters of the uranium and thorium modules, the most important influencing factor on energy multiplication factor M (the ratio of total blanket energy output and the fusion energy) and the 233U breeding rate is the fraction of the external fusion neutron source irradiated on the uranium or thorium module or the blanket coverage rate of the uranium or thorium modules. Based on this characteristic, an innovative hybrid reactor design that employs a dual-coolant system is proposed in this technical note. Uranium modules still use water as the coolant to maintain a high energy multiplication factor, whereas helium is used as the coolant for the thorium module to obtain a fast neutron spectrum to enhance the 233U breeding. The simulation results show that the helium-cooled thorium module is 2.5 times more efficient in 233U breeding compared to the original water-cooled thorium module design. Approximately 10 tons of 233U is produced after 20 years of operation for the helium-cooled thorium module design.