ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Claudia M. Shuldberg, Michael E. Schoff, Hongwei Xu, Noel L. Alfonso, Erwin Castillo, Jay W. Crippen, Martin L. Hoppe Sr., Michael P. Farrell
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 164-172
Technical Paper | doi.org/10.13182/FST15-231
Articles are hosted by Taylor and Francis Online.
The fabrication of three multilayer Omega-scale capsule designs with combinations of materials such as beryllium, silicon, tungsten, and copper were evaluated as part of the fabrication and delivery process. These opaque capsule designs presented characterization challenges in that nominal optical characterization techniques for Omega-scale designs were not sufficient to fully characterize the capsules. Alternate techniques such as X-ray fluorescence, radiography, scanning electron microscopy, and spectroscopy needed to be utilized in order to characterize these capsule designs. Additionally, the permeability of each material varies; therefore, each capsule design required a different approach to fill the capsule for the experiment. Three techniques were used to deliver gas-filled capsules to the experimental teams: (a) filling through the drill hole, sealing with glue under pressure, and minimizing the glue mass using laser ablation; (b) attaching a capsule fill tube assembly into the drill hole; and (c) gas permeation through the wall. The issues encountered with these techniques and their solutions are presented.