ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Sung-Ryul Huh, Nam-Kyun Kim, Hyun-Joon Roh, Gon-Ho Kim
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 171-177
Technical Note | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-887
Articles are hosted by Taylor and Francis Online.
A novel laser-assisted Hα spectroscopy is proposed to measure negative ion density in a hydrogen plasma. The laser-induced photodetachment of negative ions leads to a decrease in Hα intensity due to blocking of the mutual neutralization channel associated with generation of H (n=3) atoms. The relationship between the reduced Hα intensity and the negative ion density is investigated experimentally and analytically. It is observed that the reduced Hα intensity follows the trend in the negative ion density as a function of pressure, indicating that this spectroscopy holds promise for determining the negative ion density. In addition, a departure from linearity between the reduced Hα intensity and the negative ion density is also analyzed because it can affect the quantitative determination of the negative ion density in the laser-assisted Hα spectroscopy. The departure is found to be attributed to the change in the mutual neutralization reaction rates depending on plasma conditions.