ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Sung-Ryul Huh, Nam-Kyun Kim, Hyun-Joon Roh, Gon-Ho Kim
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 171-177
Technical Note | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-887
Articles are hosted by Taylor and Francis Online.
A novel laser-assisted Hα spectroscopy is proposed to measure negative ion density in a hydrogen plasma. The laser-induced photodetachment of negative ions leads to a decrease in Hα intensity due to blocking of the mutual neutralization channel associated with generation of H (n=3) atoms. The relationship between the reduced Hα intensity and the negative ion density is investigated experimentally and analytically. It is observed that the reduced Hα intensity follows the trend in the negative ion density as a function of pressure, indicating that this spectroscopy holds promise for determining the negative ion density. In addition, a departure from linearity between the reduced Hα intensity and the negative ion density is also analyzed because it can affect the quantitative determination of the negative ion density in the laser-assisted Hα spectroscopy. The departure is found to be attributed to the change in the mutual neutralization reaction rates depending on plasma conditions.