ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
M. Warrier and M. C. Valsakumar
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 229-234
Technical Paper | doi.org/10.13182/FST13-657
Articles are hosted by Taylor and Francis Online.
A statistical analysis of collision cascades caused by 1000 randomly directed energetic primary knock-on atoms (PKAs) using molecular dynamics (MD) simulations in crystal Fe(90%)Cr(10%) is presented. An Fe atom is chosen as the PKA in the energy range 0.1 to 5 keV. The standard deviation of the number of Frenkel pairs created during the collision cascade and range of the PKAs is presented. It is shown that the PKAs must be launched in ∼100 randomly chosen directions for the standard deviation to reach a steady value. For PKA energies 1 keV, 35 of secondary recoils have greater displacement than the PKAs. The results from the MD simulations for the number of displaced atoms are compared with those from the Norgett, Robinson, and Torrens model and other MD simulations of cascade damage in FeCr alloys.