ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Guido Van Oost
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 356-366
Technical Paper | Anomalous Transport | doi.org/10.13182/FST08-A1721
Articles are hosted by Taylor and Francis Online.
The importance of radial (i.e. perpendicular to the magnetic surface) electric fields was already recognised early in the research on controlled thermonuclear fusion. An initial description of electric field effects in toroidal confinement was given by Budker. Such a configuration with combined magnetic and electric confinement ("magnetoelectric confinement", where the electric field provides a toroidal equilibrium configuration without rotational transform) was studied by Stix, who suggested that a reactor-grade plasma under magnetoelectric confinement (electric fields of order 1 MV/cm) may reach a quasi-steady-state with ambipolar loss of electrons and some suprathermal ions (e.g. 3.5 MeV -particles). Experiments such as on the Electric Field Bumpy Torus EFBT provided quite favourable scaling for particle confinement. The possible importance of radial electric fields for transport was in the past repeatedly established. Since the early days the plasma potential has been measured in tokamaks such as ST, TM-4 and ISX-B, but because no significant effects of the radial electric field Er on plasma transport were observed under the machine conditions at that time, no further research was conducted in tokamaks.